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LANTHANIDE DIPHTHALOCYANINES. ELECTROCHEMISTRY AND DISPLAY APPLICATIONS

Margie M. Nicholson

Autonetics Strategic Systems Division, Rockwell International,
Anaheim, California 92803

ABSTRACT

Electrode films of lanthanide diphthalocyanines undergo a series
of reversible color changes that make them potentially very attractive
as flat-panel color display materials. Research on these compounds
has revealed a complex scheme of electrode processes that is not yet
fully characterized. The solid organic phases within the faradaic
system include new room-temperature anion and cation conductors, as
well as electronic semiconductors. Application of diphthalocyanine
electrochromics to practical display products will depend on develop-

ment of adequate cycle life and a technique for matrix addressing.
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Diphthalocyanine complexes of the lanthanide rare earths were
first prepared and investigated by Russian scientists. These relatively
new mambers of the phthalocyanine family have a sandwich structure
resembling that of the ferrocenes. Moskalev and Kirin (1970a) reported
that a film of lutetium diphthalocyanine on a transparent con-
ductive tin oxide electrode underwent a series of striking color
changes as the applied potential was varied in aqueous potassium
chloride solution. That observation has led others to evaluate the
rare-earth diphthalocyanines as electrochromic display materials and
to ‘investigate their basic electrochemistry. This research has
emphasized the lutetium compound, although the electrochromism is
known to occur in diphthalocyanines of all the lanthanide elements

and of several other trivalent metals.

An exceptional range of chemical behavior is found in these ﬂ
systems. The discrete organic phases, characterized by different
oxidation states of the dye, include electronic conductors, solid
anfon and cation conductors, and presumably ion exchangers. They may
also include hydrates and oxygen adducts. Because of their close
relationship to the chlorophylls and porphyrins, the diphthalocyanines

- might serve as dimeric model compounds for research on natural products.

This article provides a survey and critique of electrochemical
fnvestigatfons on the lanthanide diphthalocyanines. It then describes
thetr display characteristics and status in relation to liquid crystals

and other flat-panel display technologies, With further development
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over the next several years, the multicolor diphthalocyanine electro-
chromics may be ready for application to military, industrial, and

consumer products. .

Composition and Structure

Lanthanide diphtha]écyanines are synthesized by heating the
rare-earth acetate or chloride with o-phthalonitrile (Moskalev and
Kirin, 1970b; Mackay et al., 1974). An exothermic reaction near'300‘
prqduces the desired material and a number of by-products, which may
include monophthalocyanines. The crude solid reaction product is
pulverized and washed in several organic solvents to extract lower
molecular weight components. Further purification by 1iquid chroma-
tography yields the diphthalocyanine, which may appear in both blue
and green forms not yet fully distinguished from one another (Mackay
et al., 1974). The chromatographic step can be eliminated by vacuum
subliming the diphthalocyanine from the washed powder. In a thin
layer, the resulting deposit is a bright green film with an optical

absorption peak near 670 nm.

Figure 1 indicates the phthalocyanine ring structure and its
conventional symbols. Pc denotes the phthalocyaninato group c32“16"8’
The presence of two of these units tn the lanthanide (Ln) diphthalocya-
nine molecule 1s confirmed by elemental analysis (Mackay et al., 1974;

Kirin et al., 1967; Chang and Marchon, 1981) and mass spectroscopy

(Chang and Marchon, 1981). By analogy to other metal phthalocyanine
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compliexes, the formula is written LnHPcz. or PcLnPcH, which implies a
trivalent rare earth and a labile imino hydrogen. On this basis, a
diphthalocyanine molecule could be represented by structure 1.

W
)
TN
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Structure 2, with the hydrogen ion delocalized, was suggested by Yamana
(1977). Kasuga et al. (1980) later found crystallographic evidence
that the eight central nitrogen atoms of the two rings are equivalent;

this is consistent with an fonic or intermolecular hydrogen-bonded

structure for the solid. Moskalev et al. (1979) proposed the hydrogen-
bonded double-sandwich dimer 3 for solutions of americium and lanthanide
diphthalocyanines in benzene. Structures 1-3 are only schematic and
are not intended to show quantitatively the spatial or angular
relationships of the rings.

Quite recently, Chang and Marchand (1981) have questioned the
existence of the acidic hydrogen in lutetium diphthalocyanine on the
basis of mass spectra, magnetic susceptibility, and electron para-

magnetic resonance (EPR) data. The sum of isotopic masses in LukPc, is
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1s 1200, but a mass of 1199 was observed instead. Since the parent
mass is prominent in the mass spectrum of metal-free phthalocyanine
(Ely et al., 1973), a peak at 1200 would be expected for LukPc,.
Magnetic and EPR data showed the green form of Jutetium diphthalocya-
nine to be paramagnetic, in agreement with EPR measurements of Corker
et al. (1979). To account for the lower mass number and the para-
magnetism, Chang and Marchand proposed the formula Lu(III)PcZ. with
an unpaired electron, either in one ring or delocalized on the

two rings. This {s comparable to the formula PCL“PCox which Moskalev
and Shapkin (1977, 1979) assigned to an anodic electrocrystallization
product with an optical absorption peak at 682 nm. However, Chang's
green material and Corker's had .peaks at 665 nm; hence they must have
differed from Moskalev's. Corker et al. attributed the paramagnetism
of the green form to its existence as a salt LuHPc2+A' containing a

radical cation and an unidentified anion.

The writer proposes a variation of this: The paramagnetic green
compound may be an oxygen complex such as PcLuPcH.-O2 or PcLuPcH"'oz'.
A precedent is found in the EPR-active oxygen adducts of divalent-
metal phthalocyanines, for which Raynor et al. (1977) suggested the
structure H(II)Pc+02'. Decomposition of the oxygenated lutetium
complex to Lul’c2 and "02' or its equivalent i{n water and oxygen,
could account for the mass spectral peak at 1199. The imino hydrogen

should be restorable by reaction with water.

PcLuPc + mzo = PcLuPcH + wz

— - ...............—...........—.—-——-*—-‘- - PP—




Influences of oxygen and water on the diphthalocyanine electrochemical
processes have been observed in this laboratory (Nicholson and '

Pizzarello, 1980b) and are still under investigation.

There is distinct evidence in support of the protonated form
LnHPcz. First, electrode'f11ms of the proton-free compounds UPc2
and ThPc2 are not electrochromic (Moskalev and Alimova, 1975). This
indicates a significant structural difference. Moreover, the infrared
spectra of materials designated as LnHPc2 contain an imino hydrogen
band and other features not found in the spectra of oxidized forms
represented by Moskalev et al. (1979) as PanPcox. Finally, the
visible spectra of lanthanide diphthalocyanines depend on pH. In a
rather detailed study of dimethylformamide (DMF) - water solutions,
Moskalev and Alimova (1975) interpreted this dependence in terms
of the equilibrium
LnHPC, = LnPc,” + H' .
Green Blue
and evaluated pKa's of 4.5 to 5.5 near 20°. Mackay et al. (1974)
obtatned similar results but noted that the straightforward acid-base
equilibrium could be an oversimplification.

Electrochemistry

The rare-earth diphthalocyantnes have been investigated electro-

chemically as thin solid fiims and as solutions in organtc and aqueous-

organfc solyents. They undergo a number of faradaic oxidation and

tiataton
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reduction reactions, which may differ in mechanism, or even in
stoichiometry, for the solid and dissolved states. The experimental
methods have included manual potential-step (Moskalev and Alimova,
1975; Moskalev and Kirin, 1972; Moskalev and Kirina, 1975) galvano-
static (Nicholson and Pizzarello, 1980a), potentiostatic (Nicholson
et al., 1980) and optical (Nicholson and Pizzarello, 1980a; Nicholson
et al., 1980) transients, cyclic voltammetry (Nicholson and Galiardi,
1977, 1978; Moskalev and Shapkin, 1978), and a novel solid-state
moving-boundary technique (Nicholson and Pizzarello, 1979). Supple-
mental information has been obtained with radiotracers (Moskalev and
Kirina, 1975; Pizzarello and Nicholson. 1980), visible absorption
spectroscopy (Chang and Narchon; 1981; Corker et al., 1979; Moskalev
and Kirin, 1972; Nicholson and Galiardi, 1977, 1978), EPR (Chang and
Marchon, 1981; Corker et al., 1979), and magnetic susceptibility
(Chang and Marchon, 1981). The solution studies have focused on the
faradatc n values and identities of the reaction products. Research
on the f1Ims has dealt with those questions and with the organic
solid-state transport processes that can dominate the electrode

ktnetics.

It s evident from the diversity of proposed formulas in Table 1
that further work is needed to characterize the electrochemical

reactton products. Disparities arise primarily from the ass{gnment

of different compositions to the green starting material: LuH(Pc)2
by Moskalev and Ktrfn (1972) and Nicholson and Pfzzarello (1979),
LuHPc2+A' by Corker et al, (1979), and LuPe, by Chang and Marchon (1981).
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Further problems occur when the charge measurements yield nonintegral

n values (Nicholson and Pizzarello, 1980a; 1979) or the reactions are

incomplete (Corker et al., 1979). Oxygen complexes are not indicated

in the table, but they may belong within the electrochemical scheme.

The variety of resu]ts obtained probably reflects the actual

existence of more than one green starting material, for which the

stabi11zing conditions have not yet been determined. The phase rule

predicts that two solid phases could exist in equilibrium with the

gas if three chemical components, such as LuPcz. HZO, and 02. were

sufficient, and both temperature and pressure were allowed to vary.

This ideal situation may not be realized in practice, but an effort

to establish and characterize it over a range of temperatures seems

desirable.

In summary, the red, yellow, or brownish products result from

Toss of 1 or 2 electrons by the green form(s) of the diphthalocyanine.

Reductions to blue and violet materials have been shown to occur with

the gain of 1 to 3 or 4 electrons. Still further reduction would not

be surprising, since phthalocyanines of divalent metals such as zinc

or magnesium dissolved in organic solvents can accept up to 4 electrons

per molecule (Clack and Yandle, 1972).

Anodic Processes. Inftially, Moskalev and Kirin (1972) ascribed

the electrochromism of lutetium diphthalocyanine at anodic potenttials
Although these

to complexation of the dye with oxygen or water.

processes may occur, it soon became evident that oxtdation of the film



involved faradaic electron transfer. Moskalev and Kirina (1975) showed
this indirectly by measuring the uptake of radioactive iodine from an
jodide solution at a lutetium diphthalocyanine anode, and Nicholson and
Galiardi (1977, 1978) demonstred it coulometrically in potassium
chloride.

With the moving-boundary technique illustrated in Figure 2,
Nicholson and Pizzarello (1979) investigated the charge and material
transport processes occurring within the solid dye film as it was
anodically oxidized in the presence of ambient oxygen. The film was
supported by an insulating alumina substrate. Under constant applied
currént, the green/red color boundary was propagated upward from the
liquid contact. The boundary velocity was determined by measuring the
propagation distance x as a function of time. The electric field
withiﬁ the red phase was mapped by raising the electrolyte level in
successive increments and observing the corresponding voltage drops.
The green film is an electronic semiconductor. It was concluded that
the red product behaved as a solid anion conductor near 25°. For C1°

6 cmzlv-s, and the approximate

and 50:, the fon mobility was 4 x 10~
bulk resistivity in the red phase was 1,000 to 2,000 ohm-cm, Further

results are given in Table 2.

Independently, Yamana (1979) used a similar qualitative technique
with erbium diphthalocyanine films. He also attributed anodic color
propagation from the electrolyte interface to the anion injection

mechanism. Pizzarello and Nicholson (1980) confirmed with radiotracers
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that chlorine and sulfur were present in the propagated red films at
levels corresponding to n = 2 or 3. From these resulits and the tracer
work of Moskalev and Kirina (1975), the anodic reaction of lutetium

diphthalocyanine in a halide (X~ ) electrolyte has been written
LuPc, + X~ -LuHPc2-2X' + 2e 111

This process is not pH sensitive. However, the anodic boundary
propagation requires some ambient water vapor and, with a sulfate
solution, can also require oxygen (Nicholson and Pizzarello, 1980b).
These ambient effects are not yet well understood; they suggest the
existence of hydrates and possibly room-temperature oxygen carriers

among the dye phases present.

Stabilities of red forms propagated in Tutetium diphthalocyanine
f11m§Aw1th different anions were compared by observing changes in the
absorption spectrum on open circuit for about 20 hr while the Tower end
of the film remained in the electrolyte (Pizzarello and Nicholson, 1981).
Red films prepared with sulfate, chloride, or bromide ions were stable,
while those prepared with the more mobile fluoride or acetate ions
decayed to green with first-order rate constants near 0.1 hr'l. Stow
oxidation of water by the red dye species was the suggested cause

of chemical color reversal.

The kinetics of the anodic process in lutetium diphthalocyanine
films on tin oxide was investigated by recording galvanostatic and

optical-absorption transients with the electrode completely immersed

10




in aqueous KC1 (Nicholson and Pizzarello, 1980a). In this more usual
cell configuration, the reaction occurred in milliseconds to seconds,
while the lateral boundary propagations took several hours. Optical
and electrical transition times marking the end of the oxidation
process were in good agreement. The apparent n's ranged from 0.7 to
2.0 at current densities of 0.3 to 265 mA/cmz. The sotid-electrolyte
model also fit the galvanostatic transient data, with an ionic space

charge in the red phase as the rate-controlling factor. Potentiostatic

transients have been examined in lesser detail (Nicholson et al., 1980).
They are somewhat more difficult to interpret but can be useful in
correlating display switching characteristics with the dasic

electrochemistry.

Moskalev et al. (1979) and Moskalev and Shapkin (1978) used anodic
electrocrystallization to isolate diphthalocyanines, including an
americium compound, from the partially purified organic synthesis

products. They gave the equation

PelnPcH — PanPcox + H+ +e

Solution Solid

v

for electrocrystallization from DMF solutions containing some water and
hydrazine hydrate. A l-electron transfer was confirmed for the reverse
process by 1inear potential-sweep voltammetry. Although the hydrazine
hydrate may not have been simply an inert solvent, it had no obvious
effect on the cathodic scan (Moskalev and Shapkin, 1978). In its

absorption spectrum, PcLuPcox thus prepared differs from Nfcholson's
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red LuHPc2+*-2X' and from Chang's green LuPcz. It resembles, instead,

Chang's oxidized species designated as LuPc2+.

Corker et al. (1979) carried out essentially complete electrolyses
of lutetium diphthalocyanine dissolved in DMF and examined the initial
and final solutions by absorption spectroscopy and EPR. Formulas of
the reaction products were derived from the magnetic changes rather

than electrical charge measurements.

Chang and Marchon (1981) isolated a diamagnetic yellow-tan
oxidation product from the chemical reaction of green lutetium diphtha-
locyanine with phenoxathiin hexachloroantimonate. Elemental analysis
agreed with the composition LuPc2+SbCIG', and the change in magnetism
indicated the loss of one electron. However, the optical absorption
spectrum of the yellow-tan material resembled that of the yellow-red
species which Corker wrote as LuH(Pc);+. At a molecular weight near
1,200, elemental analysis could not be expected to determine the

presence of one additional hydrogen atom.

Cathodic Processes. The same questions concerning the green

starting material can influence the formulation of the cathodic
reactions. The original suggestion of Moskalev et al. (Moskalev and
Kirin, 1970a; 1970b; Moskalev and Alimova, 1975) that the green-to-blue
transformation of a lutetium diphthalocyanine film is due to field-
induced acid ionization of the dye {s contradicted by later findings
that one or more electrons are gained in the process (Nicholson and

Galiardi, 1977, 1978; Nicholson and Pizzarello, 1981), Nicholson and

12




Pizzarello recently investigated the cathodic electrochromism in HC1

and KC1 under a helium atmosphere by the moving-boundary technique. The
results conform to a cation-injection model analogous to the anion-
injection process found in the oxidations. Significantly, only light
blue 1- or 2-electron reduction products were obtained in the propa-
gations with metal cations, while dark blue to violet 3- or 4-electron
products were obtained with the acid. A hydrogen-ion mobility of

8 x 10'7 cmzlv-s and an estimated bulk resistivity of 1,800 ohm-cm
were determined in the dark colored material propagated from HCl. With
the dye on tin oxide, completely immersed in aqueous KC1, both light
and dark blue, as well as violet, cathodic products can be formed
(Nicholson and Galiardi, 1977, 1978). Protonation of the dye in the
neutral electrolyte may occur indirectly by coupled chemical reaction
with cathodic hydrogen adsorbed on tin oxide, rather than by direct
electron and proton injection into the organic solid (Nicholson and

Pizzarello, 1981).

The blue and violet products are readily oxidized to green in air
and tend to peel away from some inorganic substrates. They are also
more soluble than the green form in organic solvents such as acetoni-
~ trile and dimethyl sulfoxide (Nicholson and Pizzarello, 1981). For
these reasons, the reduced forms are more difficult to handle experi-

mentally than the oxidation products.

Table 1 lists a variety of proposed cathodic products. Corker
et al. (1979) showed that the absorption spectrum of lutetium

13
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diphthalocyanine dissolved in DMF depended on the purity of the solvent
and attributed the blue form to a reducing agent in the unpurified
liquid. Chang and Marchon (1981) produced a spectrally similar blue
solution in dichloromethane by first reducing the green form to violet
with zinc amalgam and then converting it to blue by exposure to afr.
This blue form is not necessarily one of the electrochemical products.
Further study of the cathodic electrochromism by electrochemical and
spectroscopic methods is in progress in this laboratory. Kinetically,
Bifllat et al. (1981) have noted faster coloration of lutetium diphtha-
locyanine in the cathodic regime that in the anodic, but details of

their work have not yet been published.

The electrochemical kinetics, the particpation of ions and other
dissolved species, and the practical problem of adhesion all bear
1mporiantly on the use of diphthalocyanine films in electrochromic
displays. The next section gives a technological perspective on these

new display materials.

Display Applications

In display technology, electrochromics stand today where 1iquid
crystals stood some years ago. The blue and white tungsten oxide
electrochromic now meets performance requirements of electronic time-
pieces (Kaneko et al., 1981) but has not yet claimed a share of
commercial or military display markets. The rare-earth diphthalocya-

nines are a newer system, very different chemically, and more exciting
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aesthetically, but stil) awaiting the intensive development effort that
must precede manufacturing. The potential applications include elec-
tronic games, appliances, automotive instrument panels, and industrial
controls, as well as military devices ranging from simple bar graphs

to battery operated emergency equipment, avionics displays, and

large shipboard or ground-based information panels.

Table 3 summarizes the outstanding combination of display char-
acteristics offered by lutetium diphthalocyanine. The other rare-earth
complexes are not as well characterized but are expected to behave in
a similar manner. Absorption spectra and representative Munsell color
indices for lutetium diphthalocyanine in KC1 at various applied voltages
are given by Nicholson and Galiardi (1977, 1978). If a diphthalocya-
nine display is switched once per second, the average power density is
about.l to 3 mH/cmZ. depending on the dye-film thickness and the color
transition involved. This is an order of magnitude higher than the
power required by liquid crystals, but several orders of magnitude
Tower than that of electroluminescent displays or light emitting diodes.
Because an electrochromic display has open-circuit memory, it gains a
further power advantage with less frequent switching. In comparison
with other electrochromics, including some experimental organic
materials (Kaufman, 1978), the rare-earth diphthalocyanines have
greater color range, lower switching energy, and faster than usual

response.

e o T
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An electrochromic cell is illustrated schematically in Figure 3.
The display plate consists of electrically isolated areas that may be
independently addressed by application of a voltage pulse. The acti-
vated portion changes color, thus becoming visible against a con-
trasting background. Lutetium diphthalocyanine can assume red, green,
blue, violet, or intermediate colors. However, it cannot become white
or transparent, nor does it emit light. The cell in Figure 3 is to be
viewed with front 1ighting. It therefore contains a white porous filler
which serves as a reflective optical backing for the dye film and con-
ceals the counter electrode. A diphthalocyanine display is also
attractive as a color transparency projected on a large screen. The
white filler is then omitted, and the counter electrode is shaped as
an open frame around the viewing area. In most experimental display
cells, the electrolyte has been aqueous KCl, and the counter electrode,

Ag/AgCl.

The display capabilities of lutetium diphthalocyanine were
first reported by Nicholson and Galiardi in 1977. Subsequent develop-
ment has included a preliminary dot-matrix investigation (Nicholson
et al., 1980) which demonstrated color contrast, resolution, and
memory at 24 lines per inch and provided an engineering equivalent-
circuit model for the dye electrode derived from potentiostatic
transients. A typical dye film, in green/red switching, behaves as a
pseudocapacitance of 1,000 uf/cm2 in series with an area resistance of

20 ohms-cmz. The corresponding time constant of 20 ms is a measure

of the inherent switching time.
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Two principal development tasks must be performed before detailed
process technology can be established. The cycle 1ife must be extended,
and, for most applications, a means for matrix addressing must be
devised. Electrochromic cells usually attain cycle lives far beyond
those of secondary batteries, although both devices operate with
faradaic mechanisms. The essential difference apparently is that dis-
play films are very thin (~1,000 A for LuHPcz) and have free access
to the electrolyte. Early 1ife testing as demonstrated more than
5 x 104 cycles for red/green and red/blue switching of Tutetium
diphthalocyanine (Nicholson and Galiardi, 1979). The life limiting
factors cannot be given in detail, but the usual effect is a gradual
loss of color intensity, rather than catastrophic failure. Displays
generally must have a life of 106 to 108 switching cycles. Since other
electrochromic systems have exceeded 107 cycles, this is not a priori
considered excessive for the diphthalocyanines. However, each electro-
chromic system is chemically unique and can achieve its full display
capability only through intensive, specific laboratory experimentation.
This developmental work has not yet been done for the rare-earth

diphthalocyanines.

Although useful information can be displayed with graphic patterns
or segmented alphanumeric characters of the sort used in digital
watches, matrix displays in which the entire panel is covered by
switchable dots are much more versatile. Electrical addressing of the
matrix {s a general problem in electrochromic display technology. From

an engineering standpoint, 1t is desirable to construct a matrix panel




from parallel rows of display dots with each row of dots on a common
electrical connector. This makes it difficult to control the individual
dots during the switching process and in the memory mode, even when the
counter electrode array is structured to cause selectivity. A pre-
ferred approach may be to incorporate an electronic drive matrix directly
on the display panel, so that each dot has, in effect, a separate switch
to the power supply. Integrated matrix drive using cadmium selenide
thin-film transistors has been successfully developed by Brody et al.
(1979) for electroluminescent and liquid-crystal panels at least

6 x 6 inches in size. Recently, Barclay et al. (1980) demonstrated

a 1 x 1-inch viologen electrochromic matrix with integrated drive

built on a silicon chip. With appropriate design and processing modi-
fications, these matrix-drive concepts should be adaptable to

diphthalocyanine electrochromic displays.
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I1lustrations

——————————————

1. The Phthalocyanine Ring Structure

2. Expérimental Arrangement for Moving-Boundary Measurements

3, Schematic Design of Electrochromic Display Cell
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